Scheduling Optimization of Cloud Resource Supply Chain through Multi-Objective Particle Swarm Optimization
نویسندگان
چکیده
منابع مشابه
Using Multi-Objective Particle Swarm Optimization for Bi-objective Multi-Mode Resource-Constrained Project Scheduling Problem
In this paper the multi-mode resource-constrained project scheduling problem with discounted cash flows is considered. Minimizing the makespan and maximization the net present value (NPV) are the two common objectives that have been investigated in the literature. We apply one evolutionary algorithm named multiobjective particle swarm optimization (MOPSO) to find Pareto front solutions. We used...
متن کاملOFDM Systems Resource Allocation using Multi- Objective Particle Swarm Optimization
Orthogonal Frequency Division Multiplexing (OFDM) has the inherent properties of being robust to interference and frequency selective fading and is de facto the adopted multiplexing techniques for the 4 th generation wireless network systems. In wireless system, resources such as bandwidth and power are limited, intelligent allocation of these resources to users are crucial for delivering the b...
متن کاملMulti-Objective Design Optimization of a Linear Brushless Permanent Magnet Motor Using Particle Swarm Optimization (PSO)
In this paper a brushless permanent magnet motor is designed considering minimum thrust ripple and maximum thrust density (the ratio of the thrust to permanent magnet volumes). Particle Swarm Optimization (PSO) is used as optimization method. Finite element analysis (FEA) is carried out base on the optimized and conventional geometric dimensions of the motor. The results of the FEA deal to ...
متن کاملSupply Chain Multi - Objective Simulation Optimization
A critical decision companies are faced with on a regular basis is the ordering of products and/or raw materials. Poor decisions can lead to excess inventories that are costly or to insufficient inventory that cannot meet its customer demands. These decisions may be as simple as “How much to order” or “How often to order” to more complex decision forecasting models. This paper addresses optimiz...
متن کاملMulti-Objective Optimization of Solar Thermal Energy Storage Using Hybrid of Particle Swarm Optimization and Multiple Crossover and Mutation Operator
Increasing of net energy storage (Q net) and discharge time of phase change material (t PCM), simultaneously, are important purpose in the design of solar systems. In the present paper, Multi-Objective (MO) based on hybrid of Particle Swarm Optimization (PSO) and multiple crossover and mutation operator is used for Pareto based optimization of solar systems. The conflicting objectives are Q net...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Simulation Modelling
سال: 2019
ISSN: 1726-4529
DOI: 10.2507/ijsimm18(1)co3